

■ 5 小時

[**活動 1**] 理解全等三角形的意義與符號的記法。

■特別強調兩個三角 形全等時,必須是 對應邊與對應角才 會相等。 110 第三章 三角形的基本性質

三角形的全等

1.全等二用形 3.全等三角形的應用 2.三角形的全等性質

動態圖解

全等三角形

對應能力指標 8-s-04

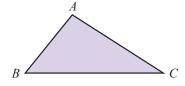
國小時,曾經利用剪紙與疊合的方法判別兩個三角形是否全等。

如果兩個三角形可以完全疊合,稱這兩個三角形全等。此時疊合在一起的頂點,稱為對應頂點;疊合在一起的角,稱為對應角;疊合在一起的邊,稱為對應邊。

放大

全等三角形的對應關係

兩個全等三角形的對應邊相等,對應角也相等。



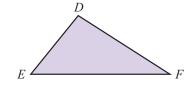
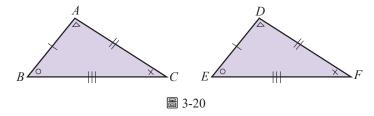


圖 3-19

如圖 3-19, $\triangle ABC$ 與 $\triangle DEF$ 全等,可以記為「 $\triangle ABC \cong \triangle DEF$ 」,其中符號「 \cong 」讀作「全等於」。

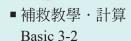
 $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$, $\overline{AC} = \overline{DF}$ (對應邊相等), $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$ (對應角相等)。

如圖 3-20,利用相同的記號標示相等的對應邊與對應角,可以更清楚觀察 到對應的關係。



加強

備課教學資源



■ 免試加強類題本 3-2

會考觀測站-加強演練題》 搭配課文

((D)) ■ 若 $\triangle ABC \cong \triangle DEF$,且 A 和 D 爲對應點,B 和 E 爲對應點,則下列敘述何者正確?

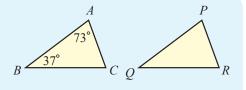
(A) $\angle A = \angle F$ (B) $\angle C = \angle E$ (C) $\overline{BC} = \overline{DE}$ (D) $\overline{AC} = \overline{DF}$

「 $\triangle ABC \cong \triangle DEF$ 」表示 $\triangle ABC$ 和 $\triangle DEF$ 全等,不一定表示頂點 A 的對應 頂點是 D, 頂點 B 的對應頂點是 E, 頂點 C 的對應頂點是 F。但在本教材中, 若未特別說明時,則「 $\triangle ABC \cong \triangle DEF$ 」即表示「A 和 D」、「B 和 E」、「C 和 F 是三組對應頂點。

放大 例 1 三角形的全等

如圖, $\triangle ABC \cong \triangle PQR$,且 $A \cdot B \cdot C$ 的對應頂點分別是 $P \times Q \times R$ 。

若 $\angle A = 73^{\circ}$, $\angle B = 37^{\circ}$, $\overline{QR} = 4$,求:



 \mathbb{F} (1) $:: \triangle ABC$ 與 $\triangle PQR$ 全等,

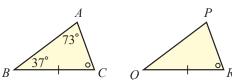
 $\therefore \angle P = \angle A = 73^{\circ} \circ$

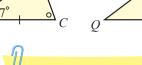
(2) ∴ △ABC 與△PQR 全等,

$$\therefore \angle R = \angle C = 180^{\circ} - \angle A - \angle B$$
$$= 180^{\circ} - 73^{\circ} - 37^{\circ} = 70^{\circ}$$

(3) ∴ △ABC 與△PQR 全等,

 $\therefore \overline{BC} = \overline{QR} = 4 \circ$





符號「::」表示「因為」。 符號「∴」表示「所以」。

隋)堂練習

如果 $\triangle ABC \cong \triangle PQR$,且 $A \cdot B \cdot C$ 的對應頂點分別是 $P \cdot Q \cdot R$ 。其中 $\angle A = 90^{\circ}$, $\overline{QR} = 10$, $\overline{PQ} = 6$, \overline{x} :

(1) △ABC 的周長。

 $(1) : \underline{\triangle} \underline{A} \underline{B} \underline{C} \underline{\cong} \underline{\triangle} \underline{P} \underline{O} \underline{R}$

 $\overline{BC} = \overline{QR} = 1\overline{0}$, $\overline{AB} = \overline{PQ} = 6$

 $\therefore \angle A = 90^{\circ}$

 $AC = \overline{PR} = \sqrt{10^2 - 6^2} = 8$ △ABC的周長=6+8+10=24

(2) △*POR* 的面積。

(2): $\angle P = \angle A = 90^{\circ}$

∴ $\triangle PQR$ 的面積= $\frac{6\times8}{2}$ =24

對於任意兩個三角形,是否需要同時檢驗「三組對應邊皆分別相等」與 「三組對應角皆分別相等」,才可以確認這兩個三角形全等?

接下來將探討至少需要哪些條件,才可確定出兩個三角形全等。為了方便 記錄檢驗的條件,我們用「S」代表「邊」(side),用「A」代表「角」(angle)。

基礎

會考觀測站-基礎演練題』搭配例 1

1. $\triangle ABC \cong \triangle PQR$,且 A 和 P、B 和 Q、C 和 R 是三組對應頂點。若 $\angle A$ =40°,

 $\angle O=60^{\circ}$, $\overline{AB}=6$ 公分,求:

- $(1) \angle C$ 及 $\angle P$ $(2)\overline{PQ}$ 的長
- $(1) \angle C = 80^{\circ}$, $\angle P = 40^{\circ}$ (2)6 公分
- $2. \triangle ABC \cong \triangle PQR$, $\angle A = 90^{\circ}$, $\overline{PQ} = 5$ 公分, $\triangle ABC$ 的面積爲 30 平方公分, 求 $\triangle ABC$ 的周長。30公分

✓ 教學眉批

- 在本教材若沒有特 別說明,全等三角 形的記號,須依照 對應相等的順序來 記,例如 $\triangle ABC$ 與 $\triangle DEF$ 全等,其中 A和D、B和E、C和F是三組對應頂 點,可記為
- ■三角形的全等可經 由全等性質判別, 但多邊形的全等, 則必須符合下列條 件:
 - (1)每組對應邊相等 (2)每組對應角相等 以上兩個條件缺一 不可。因此證明多 邊形全等是比較困 難的,不宜讓學生 練習。

關鍵提問

■ △ABC 的面積是多 少呢?

答:24。

活動2 已知三角形的三邊,利用尺規畫出此三角形,並驗證「若有兩個三角形的三邊對應相等,則此兩個三角形必至等」,即*SSS*全等性質。

数學眉批

- SSS全等從作圖教 起,並利用隨堂練 習從不同的邊開始 作圖,讓學生彼此 互相比較,看看所 畫出來的三角形是 否全等。
- SSS作圖不宜只是 記憶全等的規則, 應讓學生經由作圖 過程,了解兩個三 角形會全等。
- ■教師可以利用課堂 上任意畫一個三角 形,要求學生利用 尺規作圖的一人人 出一個三角形別 明三角形的三邊長分別 原三角形的三邊 相等,並檢驗這兩 個三角形是否 等。

動態圖解 GGB 2 三角形的全等性質

對應能力指標 8-s-07

□ SSS 全等性質

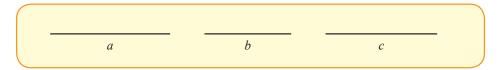
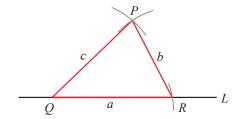


圖 3-21

放大 作法:

- (1)畫一條直線 L,並在 L 上取 $Q \setminus R$ 兩點,使得 $\overline{QR} = a$ 。
- (2)分別以 $Q \times R$ 為圓心, $c \times b$ 長為半徑,在 L 的同側畫兩弧。 設兩弧相交於 P 點。
- (3)連接 \overline{PQ} 、 \overline{PR} ,則 $\triangle PQR$ 就是所求的三角形。

作圖區



由上面的作圖過程中可知,只要知道三角形的三邊長,即可用尺規作圖畫 出一個三角形。這樣的作圖方法,稱為 SSS 作圖。

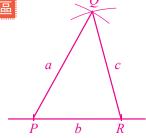
基礎

會考觀測站-基礎演練題』 搭配課文

- 已知 $\triangle ABC \cong \triangle DEF$,若 $\overline{AB} = (2x+3)$ 公分, $\overline{BC} = (4x-2)$ 公分, $\overline{AC} = (3x)$ 公分, $\overline{DE} = (x+8)$ 公分,求:
 - (1)x (2) △*DEF* 的周長
 - (1) 5 (2) 46 公分

探索活動 SSS 作圖

模仿前頁的作法,但由其他不同的邊開始操作(例如:先在 L 上作出與線段 b 或 c 等長的邊),在下面的 [color b] 畫出 $\triangle POR$,並利用附件 9 中的(1),以疊 合的方式,觀察是否與前頁所畫的 $\triangle POR$ 全等。是。



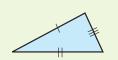
- (1)畫一直線L,並在L上取P、R 兩點, 使得 $\overline{PR} = h$ 。
- (2)分別以 $P \times R$ 兩點為圓心, $a \times c$ 長為半徑, 在L的同側畫兩弧。設兩弧交於O點。
- (3)連接 \overline{OP} 、 \overline{OR} ,則 $\triangle POR$ 即為所求。

由上述探索活動可以發現,利用一個三角形的三線段長,以 SSS 作圖方法 所作出的三角形都會全等。

放大

SSS 全等性質

若兩個三角形的三邊對應相等, 則這兩個三角形全等。



放大 (隋) 堂練?

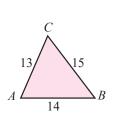
解

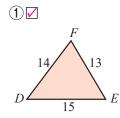
互動

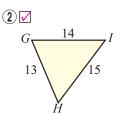
配合習作 P38 基礎題 2(3)

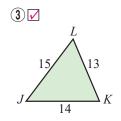
回答下列問題:

(1) 利用 SSS 全等性質, 勾選出哪些三角形與△ABC 全等。(複選)









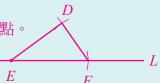
- (2) 寫出這些全等的三角形中, ∠A 的對應角。
 - $\bigcirc 1 \angle F \qquad \bigcirc 2 \angle G \qquad \bigcirc 3 \angle K \circ$

加強

會考觀測站-加強演練題 / 搭配課文

■ 已知 $\triangle ABC$,利用 SSS 作圖,作 $-\triangle DEF$,使得 $\triangle DEF \cong \triangle ABC$ 。

- (2)以 E 點爲圓心, \overline{BC} 爲半徑畫弧,交 L 於 F 點。
- (3)分別以 $E \times F$ 兩點爲圓心 \sqrt{AB} 及 \overline{AC} 爲半徑畫弧 \sqrt{AB} 及點。
- (4)連接 $\overline{DE} \setminus \overline{DF}$,則 $\triangle DEF$ 即爲所求。



☑ 教學眉批

- 探索活動應讓學生 操作,印象才會深 刻。
- SSS作圖是全等作 圖中最基礎的,官 讓學生多加練習。
- ■教師可使用備課 用書後附的附件9 於課堂操作。

補充資料

全等:

在幾何上,若兩個幾 何圖形的形狀及大小 完全相同,則稱這兩 個圖形是全等的圖 形。全等是相似的一 種特例,當相似圖形 的對應邊比例是 1, 則兩圖形全等。

基會試題

■ 107 會考第 11 題

關鍵提問

■在此題中, $\angle B$ 的 對應角是哪幾個? 答: $\angle D$ 、 $\angle I$ 、 $\angle J \circ$

備課教學資源

■ 隨堂輕鬆考第 22 回

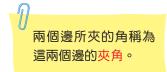
沙 教學眉批

- SAS全等從作圖教 起,並利用隨堂練 習從不同的邊開始 作圖,讓學生彼此 互相比較,看看所 畫出來的三角形是 否全等。
- SAS作圖不宜只是 記憶全等的規則, 應讓學生經由作圖 過程,了解兩個三 角形會全等。

GGB DSAS 全等性質

對應能力指標 8-s-07

如圖 3-22,已知一個三角形的兩個邊長分別為 a 和 b,且這兩邊所夾的角等於 $\angle 1$ 。利用以下尺規作圖的作法,在 $\boxed{\mathbf{f}}$ 畫出一個三角形,使得此三角形有兩個邊長分別等於 a 和 b,且這兩邊所夾的角等於 $\angle 1$ 。



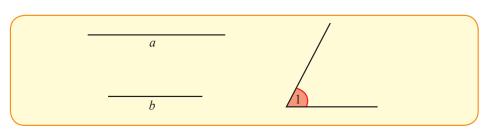
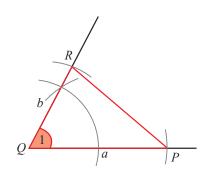


圖 3-22

放大 作法:

- (1)作 $\angle Q = \angle 1$ 。
- (2)在 $\angle Q$ 的一邊取一點P,使 $\overline{QP} = a$ 。
- (3)在 $\angle Q$ 的另一邊取一點 R,使 $\overline{QR} = b$ 。
- (4) 連接 \overline{PR} ,則 $\triangle POR$ 就是所求的三角形。

作圖區

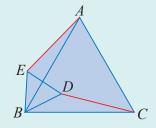


由上面的作圖過程中可知,只要知道三角形的兩個邊長與此兩邊的夾角,即可用尺規作圖畫出一個三角形。這樣的作圖方法,稱為 *SAS* 作圖。

精熟

會考觀測站-精熟演練題 搭配課文

- ■如圖, $\triangle ABC$ 與 $\triangle BDE$ 皆爲正三角形。
 - (1)哪一個全等性質可以說明 $\triangle ABE \cong \triangle CBD$? $\square SSS \square SAS \square ASA \square AAS \square RHS$
 - (2) <u>CD</u> 和 <u>AE</u> 是否相等?爲什麼? 是,對應邊相等

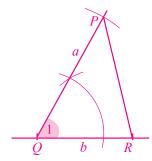


探索活動 SAS 作圖 基會

仿照前頁的作法,但由其他不同的邊開始操作(例如: 先作與 b 等長的線 段當作角的一邊,再以此線段的端點為頂點作 21,然後在角的另一邊取一 點,使得頂點到此點的線段長等於 a),在下面的 \mathfrak{E} 畫出一個 $\triangle POR$, 並利用附件9中的(2),以疊合的方式,觀察是否與前頁所畫的 $\triangle POR$ 全等。

作圖區

是。



由上述探索活動可以發現,利用一個三角形的兩邊與此兩邊的夾角, 以SAS作圖方法所作出的三角形都會全等。

放大

► SAS 全等性質

互動

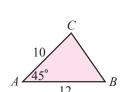
若兩個三角形有兩邊和它們的夾角皆對應 相等,則這兩個三角形全等。

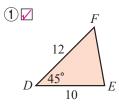
放大(隨)堂練習

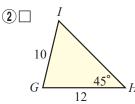
配合習作 P38 基礎題 2(2)

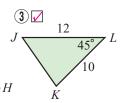
回答下列問題:

 \mathbb{R} (1) 利用 SAS 全等性質,勾選出哪些三角形與 $\triangle ABC$ 全等。(複選)









(2) 寫出這些全等的三角形中,∠B 的對應角。

提問

 $\bigcirc 1 \angle F \bigcirc 3 \angle J \circ$

基會

102 基測第 18 題 搭配課文

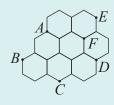
(B))■右圖爲八個全等正六邊形緊密排列在同一平面上的 情形。根據圖中標示的各點位置,判斷△ACD與下 列哪一個三角形全等?

(A) $\triangle ACF$

(B) $\triangle ADE$

 $(C) \triangle ABC$

(D) $\triangle BCF$



☑ 教學眉批)

- 探索活動應讓學生 操作,印象才會深 刻。
- ■教師可使用備課用 書後附的附件 9 於 課堂操作。

基會試題

- 97 基測 I 第 31 題
- 102 基測第 18 題

全等變換:

不改變圖形形狀、大 小的幾何變換稱爲全 等變換。其中包括平 移、旋轉、軸對稱。

- (1)平移:將一個圖形 按一定的方向移動 ·定的距離。
- (2)旋轉:將一個圖形 繞一個頂點轉動-定的角度。
- (3)軸對稱:將一圖形 上的所有點以一直 線爲對稱軸做對稱 點,則對稱點所形 成的圖形,就稱為 原圖形的軸對稱圖 形。

關鍵提問

■在此題中, $\angle C$ 的 對應角是哪幾個? 答: $\angle E \setminus \angle K \circ$

活動4 已知三角形的两角及其夾邊二若動4 的兩角及其夾邊工若有角形,並驗證「若有兩個三角形的應用,更大數學,則此兩個三角形必全等」,即ASA 全等性質。

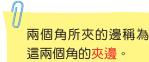
沙 教學眉批

- ASA 全等從作圖教 起,並利用隨堂練 習從不同的角開始 作圖,讓學生彼此 互相比較,看看所 畫出來的三角形是 否全等。
- ASA作圖不宜只是 記憶全等的規則, 應讓學生經由作圖 過程,了解兩個三 角形會全等。

GGB DASA 全等性質

對應能力指標 8-s-07

如圖 3-23,已知一個三角形的兩個內角分別等於 $\angle 1$ 和 $\angle 2$,且這兩個角所來的邊長等於a。利用以下尺規作圖的作法,在 \boxed{a} 畫出一個三角形,使得此三角形有兩個內角分別等於 $\angle 1$ 和 $\angle 2$,且這兩個角所來的邊長等於a。



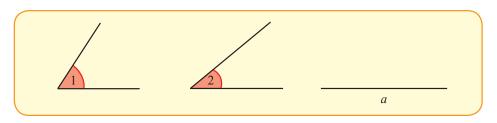
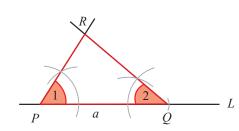


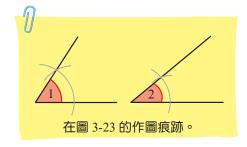
圖 3-23

放大 作法:

- (1)畫一條直線 L,在 L 上作 \overline{PQ} ,使 $\overline{PQ} = a$ 。
- (2)分別以 $P \cdot Q$ 為頂點, \overline{PQ} 為一邊,在L的同側作 $\angle P = \angle 1$, $\angle Q = \angle 2$ 。
- (3)將 $\angle P$ 和 $\angle Q$ 的另一邊延長,相交於R,則 $\triangle PQR$ 就是所求的三角形。

作圖區





由上面的作圖過程中可知,只要知道三角形的兩個內角及此兩角的夾邊, 即可用尺規作圖畫出一個三角形。這樣的作圖方法,稱為 ASA 作圖。

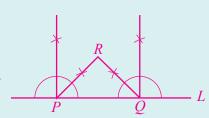
基礎

會考觀測站-基礎演練題 搭配課文

■ 已知線段 a,利用 ASA 作圖,畫一以 a 爲斜邊的等腰直 角三角形。

作法:

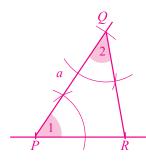
- (1) 畫一直線 L, 並在 L上取 $P \setminus Q$ 兩點, 使得 $\overline{PQ} = a$ 。
- (2) 分別過 $P \times Q$ 兩點作L的垂線。
- (3) 於 L 的同側,分別作 $\angle P \times \angle Q$ 的角平分線,並交於 R 點,則 $\triangle PQR$ 即爲所求。



探索活動 ASA 作圖 基會

仿照前頁的作法,但依其他不同的次序開始操作(例如:先作 $\angle P$ 等於 $\angle 1$, 然後在 $\angle P$ 的一邊取一點 Q,使 \overline{PQ} 等於 a,最後以 \overline{PQ} 為一邊作 $\angle O$ 等於 $\angle 2$,使得 $\angle P$ 、 $\angle Q$ 為三角形的兩內角),在下面的 作圖圖 畫出 $\triangle PQR$,並 利用附件 9 中的(3),以疊合的方式,觀察是否與前頁所畫的△POR 全等。

作圖區 是。



由上述探索活動可以發現,利用兩個角和此兩角的夾邊,以 ASA 作圖 方法所作出的三角形都會全等。

■ ASA 全等性質

若兩個三角形有兩個內角和它們的夾邊 皆對應相等,則這兩個三角形全等。

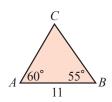
放大 (隨)堂練習

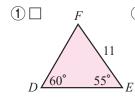
互動

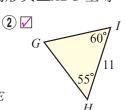
配合習作 P38 基礎題 2(4)

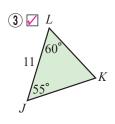
回答下列問題:

 \mathbf{R} (1) 利用 \mathbf{ASA} 全等性質,勾選出哪些三角形與 $\triangle \mathbf{ABC}$ 全等。(複選)









提問

 \mathbf{R} (2) 寫出這些全等的三角形中, \overline{BC} 的對應邊。

 $(2)\overline{GH}$ $(3)\overline{KJ}$ \circ

☑ 教學眉批)

- 探索活動應讓學生 操作,印象才會深 刻。
- ■教師可使用備課用 書後附的附件 9 於 課堂操作。

基會試題

■ 102 基測第 23 題

加強

備課教學資源

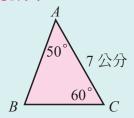
關鍵提問

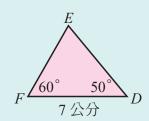
■在此題中, \overline{AB} 的 對應邊是哪幾個? 答: $\overline{IH} \setminus \overline{LJ}$ 。

■隨堂輕鬆考第23回

會考觀測站-加強演練題』搭配課文

■ 如圖, $\triangle ABC$ 與 $\triangle DEF$ 是否全等? 若全等,則是根據哪一種全等性質? 是,根據ASA全等性質。





活動 5 從三角形的 內角和定理推得「若 有兩個三角形的的 角及其中一角的的對 邊對應相等,則此 兩個三角形必等 」,即AAS全等性 質。

2 教學眉批

■ 利用三角形的內角 和為 180 度與 *ASA* 全等性質,說明 *AAS* 全等性質。

GGB DAAS 全等性質

對應能力指標 8-s-07

兩個三角形的兩個內角和它們的夾邊對應相等,這兩個三角形就會全等 (ASA 全等)。但如果對應相等的邊不是夾邊,而是其中一個內角的對邊,那麼 這兩個三角形是否會全等呢?

放大 例 2 AAS 與ASA

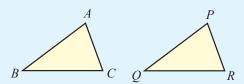
配合習作 P39 基礎題 3

如圖, $\triangle ABC$ 與 $\triangle PQR$ 中,

 $\angle A = \angle P \cdot \angle B = \angle Q \cdot$

 $\overline{BC} = \overline{QR} \circ$

説明 $\triangle ABC \cong \triangle PQR \circ$



- (1) : 三角形內角和是 180° ,且 $\angle A = \angle P$, $\angle B = \angle Q$,
 - $\therefore \angle C = 180^{\circ} \angle A \angle B = 180^{\circ} \angle P \angle Q = \angle R \circ$
- $(2) \triangle ABC$ 與 $\triangle PQR$ 中,

∴ ∠B = ∠Q(已知),

 $\overline{BC} = \overline{QR}$ (已知),

 $\angle C = \angle R$ (由(1)可知),

 $\therefore \triangle ABC \cong \triangle PQR (ASA$ 全等性質)。

()內的文字為該步驟的依據。

由例題 2 發現,兩個三角形的兩個內角及其中一個內角的對邊對應相等時,因第三個內角也會對應相等,故根據 ASA 全等性質可知這兩個三角形會全等。

放大

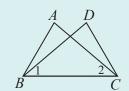
🦳 AAS 全等性質

若兩個三角形有兩個內角及其中一個內角的 對邊對應相等,則這兩個三角形全等。

基礎

會考觀測站-基礎演練題 搭配例 2

((C)) ■如圖,若 $\angle 1 = \angle 2$, $\angle A = \angle D$,則 $\triangle ABC \cong \triangle DCB$ 是根據下列何種全等性質?
(A) SAS (B) ASA (C) AAS (D) SSA



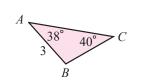
放大 (隨)堂練習

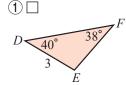
互動

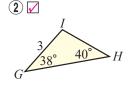
解

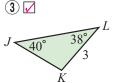
回答下列問題:

(1) 利用 AAS 全等性質, 勾選出哪些三角形與 △ABC 全等。(複選)









解

(2) 寫出這些全等的三角形中, BC 的對應邊。

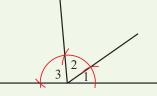
 $(2)\overline{IH}$ $(3)\overline{KJ}$ \circ

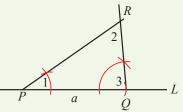
補給站 AAS 作圖

如圖,已知長度為 a 的線段,以及 $\angle 1$ 、 $\angle 2$ 兩個已知角,我們可以作 一個三角形,使得這個三角形的兩個內角分別為 < 1和 < 2, 且 < 2 對邊的 長度為 a。

作圖區

- ① $f_{\mathbb{Z}} = 180^{\circ} \angle 1 \angle 2$
- ② 畫一直線 L, 在 L 上作 \overline{PQ} , 使 $\overline{PQ} = a$ 。
- ③ 分別以 $P \cdot Q$ 為頂點, \overline{PQ} 為一邊, 在 L 的同側作 $\angle P = \angle 1$, $\angle Q = \angle 3$ 。
- ④ $\angle P$ 和 $\angle Q$ 的另一邊相交於 R 點, 則 $\triangle POR$ 即為所求。



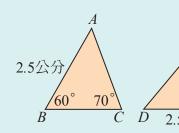


由上面的作圖過程中可知,只要知道三角形的兩個內角及其中一個內角的 對邊,即可用尺規作圖畫出一個三角形,這樣的作圖方法,稱為 AAS 作圖。

加強

會考觀測站-加強演練題 / 搭配課文

■ 如圖, $\triangle ABC$ 與 $\triangle DEF$ 是否全等? 若全等,則是根據哪一種全等性質? 是,根據AAS全等性質。



關鍵提問

■在此題中, \overline{AC} 的 對應邊是哪幾個? 答: $\overline{GH} \setminus \overline{LJ}$ 。

△ 教學眉批

■利用三角形的內角 和爲 180° 與 ASA 作圖,可完成 AAS 作圖。

動態圖解 活動 6 推 得「若 兩 **GGB C**

個直角三角形的斜邊和一股對應相等,則此兩個三角形必全等」,即RHS 全等性

沙教學眉批

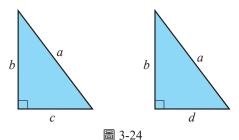
■利用畢氏定理與 *SSS* 全等性質,說 明 *RHS* 全等性質。

! 基會試題

■95 基測 II 第 32 題

GGB DRHS 全等性質

圖 3-24 中,兩個直角三角形的斜邊長都是 a,且各有一股長是 b;第一個三角形的另一股是 c,第二個三角形的另一股是 d。



由<u>畢</u>氏定理可得 $\begin{cases} b^2 + c^2 = a^2 \\ b^2 + d^2 = a^2 \end{cases}$,所以 $b^2 + c^2 = b^2 + d^2$,得 $c^2 = d^2$ 。

因為 $c \cdot d$ 皆為正數,所以 $c = d \cdot d$ 根據SSS全等性質可知,這兩個三角形會全等。

放大 🥠 RHS 全等性質 基會

若兩個直角三角形的斜邊和一股對應相等, 則這兩個三角形全等。

對應能力指標 8-s-07

RHS 中的 R 代表直角(right angle), H 代表斜邊(hypotenuse), S 指另一邊。

放大

隨堂練習

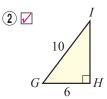
互動

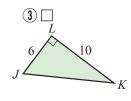
配合習作 P38 基礎題 2(1)、4

回答下列問題:

解

(1) 利用 RHS 全等性質, 勾選出哪些三角形與△ABC 全等。(複選)





展 提問

(2) 寫出這些全等的三角形中, ∠C的對應角。

基礎

興 關鍵提問

■在此題中, ∠B 的 對應角是哪幾個?答: ∠D、∠G。

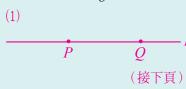
🤌 會 考 觀 測 站 - 基礎演練題 🌽 搭配課文

RHS 作圖

■如圖,給定兩個線段 $a \cdot b$,利用尺規作圖畫出一個直角三角形,使得此直角三角形的斜邊長等於線段a,一股長等於b。 a b

作法:

- (1) 畫一直線 L, 並在 L 上取 $P \times Q$ 兩點, 使得 $\overline{PQ} = b$ 。
- (2)過P點作一直線垂直L。
- (3)以 Q 點爲圓心, a 長爲半徑畫弧, 交垂線於 R 點。
- (4)連接 \overline{QR} ,則 $\triangle PQR$ 就是所求的三角形。



GGB SSA 不一定全等

兩個三角形如果有兩組邊對應相等,且其中一組邊的對角也對應相等,則這兩個三角形是否會全等呢?

如圖 3-25,已知有一個三角形的兩邊為 $a \cdot b (a > b)$,且邊長 b 所對的角等於 $\angle 1$ 。利用以下尺規作圖的作法,在 \blacksquare 畫出一個三角形,使得此三角形的兩邊分別等於 a 和 b,且邊長 b 所對的角等於 $\angle 1$ 。

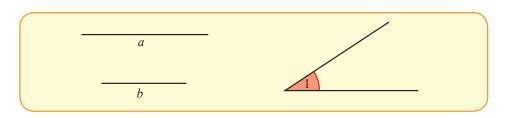
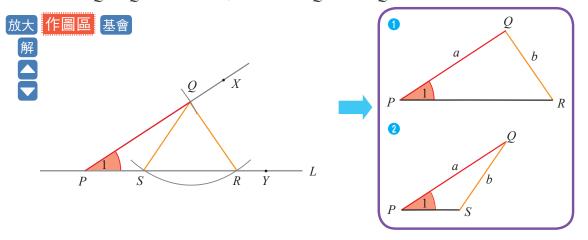


圖 3-25

作法:

- (1)畫一條直線L,在L上取一點P。
- (2)以P為頂點,L為角的一邊,作 $\angle XPY = \angle 1$ 。
- (3)在 $\angle XPY$ 的一邊 \overrightarrow{PX} 上取一點 Q,使 $\overrightarrow{PQ} = a$ 。
- (4)以O為圓心,b為半徑畫弧,交 $\angle XPY$ 的另一邊 \overrightarrow{PY} 於R與S兩點。
- (5)連接 \overline{QR} 、 \overline{QS} ,可畫出符合條件的 $\triangle PQR$ 和 $\triangle PQS$ 。



由上面作圖的過程中可知,給定三角形的兩邊長 $a \cdot b (a > b)$ 與較短邊 b的對角,可畫出 $\triangle PQR$ 和 $\triangle PQS$,即 SSA 不一定全等。

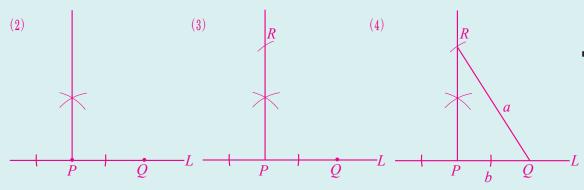
基礎

沙 教學眉批

教學時不宜過度討 論 SSA 不一定全等 的延伸問題。

! 基會試題

■ 93 基測 I 第 24 題



備課教學資源

■ 隨堂輕鬆考第 24 回

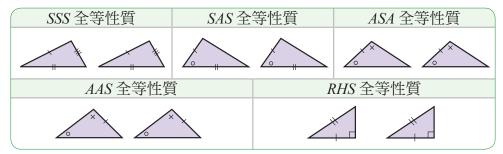
[**活動**7]應用全等三 角形的性質解題。

✓ 教學眉批

- 在說明兩三角形全 等時,可依循以下 步驟:
 - (1) 先找出欲說明 全等的兩個三角 形。
 - (2)於兩個三角形上 標記已知條件。
 - (3)判別適用的全等 性質。
- ■利用「三角形全 等,則對應邊相 等」的性質說明一 線段的垂直平分線 上的點到此線段的 兩端距離相等。
- ■依據課綱「8-s-17 能針對幾何推理中 的步驟,寫出所依 據的幾何性質。」 此處的空格,設計 成讓學生能寫出該 步驟所依據的是什 廖原理。

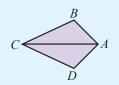
動態圖解 全等三角形的應用

我們可用下表的全等性質檢驗兩個三角形是否全等。



放大 例 3 全等三角形的應用

如圖, $\triangle ABC$ 與 $\triangle ADC$ 中, $\overline{AB} = \overline{AD}$, $\overline{BC} = \overline{DC}$, 說明 $\triangle ABC \cong \triangle ADC$ 。



對應能力指標 8-s-07

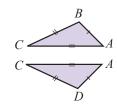
說明 在 $\triangle ABC$ 與 $\triangle ADC$ 中,

 $::\overline{AB}=\overline{AD}($ 已知),

 $\overline{BC} = \overline{DC}$ (已知),

 $\overline{AC} = \overline{AC}$ (公用邊),

 $∴ \triangle ABC \cong \triangle ADC (SSS$ 全等性質)。



放大 (隨)堂練習

如圖, $\triangle ABC$ 與 $\triangle CDA$ 中,

 $\overline{AB} = \overline{CD}$, $\angle B = \angle D = 90^{\circ}$,

完成下列空格,說明 $\triangle ABC \cong \triangle CDA$ 。 說明:

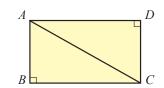
在 $\triangle ABC$ 與 $\triangle CDA$ 中,

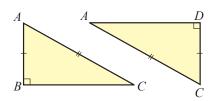
 $\therefore \overline{AB} = \overline{CD} \quad (已知),$

 $\angle B = \angle D = 90^{\circ}$ (已知),

 $\overline{AC} = \overline{AC}$ (公用邊),

 $∴ \triangle ABC \cong \triangle CDA($ *RHS* 全等性質)。





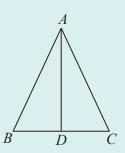
基礎

會考觀測站-基礎演練題」 搭配例 3

■如圖,已知等腰三角形中, $\overline{AB} = \overline{AC}$,且 D 爲 \overline{BC} 中點,連接 \overline{AD} 後,可得到 $\triangle ABD$ 、 $\triangle ACD$ 。若欲證明 $\triangle ABD \simeq \triangle ACD$,則可利 用何種全等性質來說明?(A)(B)(C)(D)

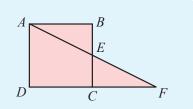
(A) SSS

(B) SAS (C) ASA (D) RHS



放大 例 4 全等三角形的應用 基會

如圖,正方形 ABCD 中, $E \in \overline{BC}$ 的中點, 延長 \overline{AE} 交 \overline{DC} 的延長線於 F 點。若 $\overline{AB} = 6$, 則 \overline{AF} 的長是多少?



 \mathfrak{M} (1) 在 $\triangle ABE$ 與 $\triangle FCE$ 中,

∴ ∠ABE = ∠FCE = 90° (ABCD 是正方形), $\overline{BE} = \overline{EC}$ ($E \oplus \overline{BC}$ 的中點),

 $\angle AEB = \angle CEF$ (對頂角),

 $∴ \triangle ABE \cong \triangle FCE (ASA$ 全等性質)。

故 $\overline{AE} = \overline{EF}$ (對應邊相等)。

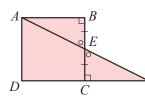
(2): $\overline{AB} = 6$, $\overline{BE} = 3$,

$$\therefore \overline{AE} = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5} ,$$

$$\overline{AF} = 2\overline{AE} = 6\sqrt{5} \circ$$

基會試題

- 94 基測 II 第 6 題
- ■90 基測 I 第 25 題
- 94 基測 II 第 29 題
- ■103 會考第9題



放大 (隋) 堂練習

如圖, $\triangle ABC$ 與 $\triangle BDE$ 為正三角形, E 點在 \overline{BC} 上, $\angle BAE = 25^{\circ}$ 。

 \mathbb{R} (1)完成下列空格,說明 $\triangle ABE \cong \triangle CBD$ 是根據哪一種全等性質。

在 $\triangle ABE$ 與 $\triangle CBD$ 中,

 $\therefore \overline{AB} = \overline{CB} (\triangle ABC$ 為正三角形),

 $\overline{BE} = \overline{BD}$ ($\triangle BDE$ 為正三角形),

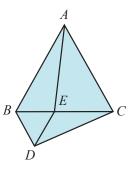
 $\angle ABE = \angle CBD = 60^{\circ}$ (正三角形的內角為 60°),

 $∴ \triangle ABE \cong \triangle CBD$ (SAS 全等性質)。

解 (2)∠BDC、∠EDC 各是多少度?

 $\angle BDC = \angle AEB = 180^{\circ} - 60^{\circ} - 25^{\circ} = 95^{\circ}$

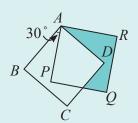
 $\angle EDC = \angle CDB - \angle EDB = 95^{\circ} - 60^{\circ} = 35^{\circ}$



△ 教學眉批

- ■利用已知條件判別 兩三角形全等的相 關題型,不宜讓學 生寫出全部的說明 過程,可適時的輔 以填空題,且讓學 牛填寫原因即可。
- ■教師可增加利用全 等後,線段或角度 會相等的相關問 題。

(D) ●右圖是兩全等的正方形 ABCD 與 APQR 重疊情形。 若 $\angle BAP=30^{\circ}$, $\overline{AB}=6\sqrt{3}$,則圖中綠色部分面積爲何? (B) 54 (C) $81 - 18\sqrt{3}$ (D) $108 - 36\sqrt{3}$ (A)48



教學眉批

■ 例題 5 即是畢氏定 理的逆定理。

在上學期我們學過畢氏定理:任意一個直角三角形,其兩股長的平方和等 於斜邊長的平方。那麼,如果有一個三角形,其最長邊的邊長平方等於另兩邊 長的平方和,則此三角形會是直角三角形嗎?

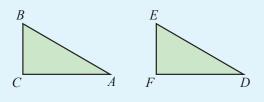
放大 例 5 由邊長判別直角三角形

如圖, $\triangle ABC$ 與 $\triangle DEF$ 中,

 $\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$, $\angle F = 90^\circ$,

 $\exists \overline{AC} = \overline{DF}$, $\overline{BC} = \overline{EF}$,

説明 $\triangle ABC \cong \triangle DEF \circ$



在△DEF中,

 $\therefore \angle F = 90^{\circ}$, $\therefore \overline{DE}^2 = \overline{DF}^2 + \overline{EF}^2$ (畢氏定理),

 $\bigvee \overline{DF} = \overline{AC}$, $\overline{EF} = \overline{BC}$, $\therefore \overline{DE}^2 = \overline{AC}^2 + \overline{BC}^2 = \overline{AB}^2$,

因此 $\overline{DE} = \overline{AB}$ 。

在 $\triangle ABC$ 與 $\triangle DEF$ 中,

 $\therefore \overline{AB} = \overline{DE}$, $\overline{AC} = \overline{DF}$, $\overline{BC} = \overline{EF}$,

 $∴ \triangle ABC \cong \triangle DEF(SSS$ 全等性質)。

在例題 5 中, $:: \triangle ABC \cong \triangle DEF$, $:: \angle C = \angle F = 90^{\circ}$ (對應角相等), 故 △ABC 為直角三角形。也就是說,若三角形滿足最長邊的邊長平方等於另兩邊 長的平方和,則此三角形為直角三角形。

放大

由邊長判別直角三角形

若三角形滿足最長邊的邊長平方等於另兩邊長的平方和,則此三角 形為直角三角形。

隨)堂練習

配合習作 P39 基礎題 5

下列各組數中,哪幾組可以作為直角三角形的三邊長?(複選)(A)(B)(C)

(A) $\sqrt{2}$ $\sqrt{3}$ $\sqrt{5}$

(B) 5 \ 12 \ 13

 $(C) 6 \cdot 8 \cdot 10$

 $(D)13 \cdot 14 \cdot 15$

加強

備課教學資源

會考觀測站-加強演練題 搭配例 5

- 隨堂輕鬆考第25回
- 免試基礎講堂 3-2
- 免試精熟本 3-2
- ■下列各組數中,哪幾組可以作爲直角三角形的三邊長?(複選)(A)(C)(D) (A) $7 \cdot 24 \cdot 25$ (B) $3 \cdot 5 \cdot 7$ (C) $0.5 \cdot 1.2 \cdot 1.3$ (D) $1 \cdot \sqrt{2} \cdot \sqrt{3}$

汗活化體驗站

■ 盒子裡有四塊蛋 糕,現在有4位同

學,每人都分到一

塊,但盒子裡還有

一塊蛋糕,爲什

有 1 位同學連盒子 都拿走,所以盒子 裡還有一塊蛋糕。

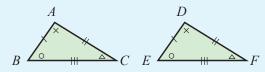
麼?

趣味數學

放大 1 全等三角形:

兩個全等三角形的對應邊相等,對應角也相等。

 $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$, $\overline{AC} = \overline{DF}$, $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F \circ B$



放大 2 三角形全等的判別方法:

SSS全等性質	SAS全等性質		ASA 全等性質	
		<u></u>		_
AAS 全等性質		RHS全等性質		

放大 3 由邊長判別直角三角形:

若三角形滿足最長邊的邊長平方等於另兩邊長的平方和,則此三角形為直角三角形。

例 在 $\triangle ABC$ 中, \overline{AB} =7, \overline{BC} =24, \overline{AC} =25。

$$\therefore 7^2 + 24^2 = 49 + 576 = 625,$$

$$25^2 = 625$$
,

$$7^2+24^2=25^2$$
,

∴△ABC 為直角三角形。

基會

107 會考第 11 題 / 搭配重點回顧

- ((C)) ■如圖,五邊形 ABCDE 中有一正三角形 ACD。若 $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{AE}$, $\angle E = 115^\circ$,則 $\angle BAE$ 的度數爲何?
 - (A) 115
- (B) 120
- (C) 125
- (D) 130

△ 教學眉批

■第1題是利用全等 三角形對應邊相 等、對應角相等的 觀念解題。

! 基會試題

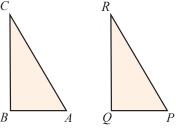
- 97 基測 II 第 19 題
- 99 基測 II 第 16 題

3-2自我評量

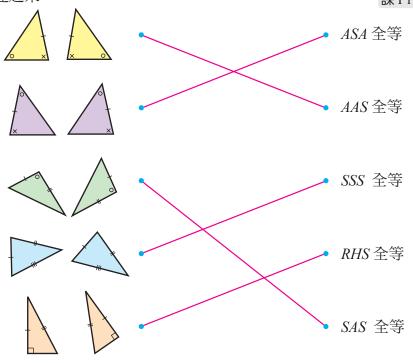
放大解

- (1) $\angle A \circ$ (1) $\therefore \triangle ABC \cong \triangle PQR \circ \therefore \angle A = \angle P = 60^{\circ}$
- (2) $\angle B \circ$ (2) $\angle B = 180^{\circ} \angle A \angle C = 90^{\circ}$
- (3) \overline{AB} 的長。
- (4) <u>BC</u> 的長。
- (3)由(1)(2)可得 $\triangle ABC$ 為 $30^{\circ}-60^{\circ}-90^{\circ}$ 的 直角三角形,且 $\overline{AC}=\overline{PR}=2\sqrt{3}$,

 $(4)\overline{AB}:\overline{BC}=1:\sqrt{3},\sqrt{3}:\overline{BC}=1:\sqrt{3},\overline{BC}=\sqrt{3}\times\sqrt{3}=3$



放大解



基礎

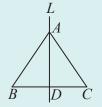
- 會考100分 3-2
- 會考基礎卷 3-2
- 會考精熟卷 3-2
- 段考精選試題 3-2

湯湯

● 考觀測站 - 基礎演練題 / 搭配自評第2題

- ■如圖 $,\overline{BC}$ 的中垂線L與 \overline{BC} 相交於D點,A爲L上一點,連接 \overline{AB} $,\overline{AC}$ 後可得
 - $\triangle ABD$ 、 $\triangle ACD$ 。若欲證明 $\triangle ABD \cong \triangle ACD$,則可利用何種全等性質來說明?

(A) SSS (B) SAS (C) ASA (D) RHS (A) (B) (C) (D)

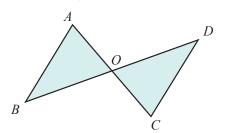


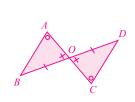
3 如圖, \overline{AC} 和 \overline{BD} 交於 O 點, $\angle A = \angle C$, $\overline{BO} = \overline{DO}$ 。

課 P122 例 3

(1)如圖,在兩個三角形中,請以相同的記號標示

對應邊或對應角,來說明 $\triangle ABO \cong \triangle CDO$ 。





(2)哪一個全等性質可以說明△ABO \cong △CDO ? (在口中打 \checkmark)

 $\square SSS \quad \square SAS \quad \square ASA \quad \square AAS \quad \square RHS$

4 如圖,在正方形 ABCD 中, $\overline{BE} = \overline{DF}$ 。

課 P123 例 4

(1) 在空格中,填入適當的文字或符號,

說明 $\triangle ABE \cong \triangle ADF$ 。

說明:

在 $\triangle ABE$ 與 $\triangle ADF$ 中,

 $\angle ABE = \angle ADF = 90^{\circ}$ (理由: 四邊形 ABCD 是正方形),

- $∴ \triangle ABE \cong \triangle ADF$ (SAS 全等性質)。
- (2) 若∠BAE=20°,則∠EAF 是多少度?
 - $\therefore \angle DAF = \angle BAE = 20^{\circ}$ (對應角相等), $\therefore \angle EAF = 90^{\circ} 20^{\circ} 20^{\circ} = 50^{\circ}$

下列各組數中,哪幾組可以作為直角三角形的三邊長?(複選)

- (A) 3 \ 4 \ 5
- (B) $5 \cdot 6 \cdot 7$ (C) $8 \cdot 15 \cdot 17$

課 P124 例 5

- (D) $7 \cdot 24 \cdot 25$ (E) $9 \cdot 40 \cdot 41$

(A)(C)(D)(E)

精熟

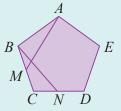
會考觀測站-精熟演練題 』 搭配白評第 4 題

■ 如圖,五邊形 ABCDE 為正五邊形, $M \setminus N$ 分別為 $\overline{BC} \setminus \overline{CD}$ 的 中點。說明 $\triangle ABM \cong \triangle BCN$ 。 說明:

因爲 $\angle ABM = \angle BCN$,

 $\overline{AB} = \overline{BC}$ (五邊形 ABCDE 爲正五邊形),

根據 SAS 全等性質, $\triangle ABM \cong \triangle BCN$ 。



△ 教學眉批

■利用已知條件判別 兩三角形全等的相 關題型,不宜讓學 生寫出全部的說明 過程,可適時的輔 以填空題, 且讓學 生填寫原因即可。