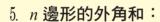


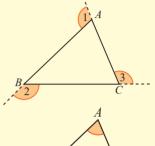
內角與外角

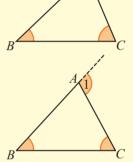
本節性質與公式摘要

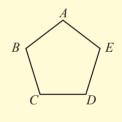
- 1. 三角形的外角和:
 - 三角形的一組外角和為360°。
 - 例 如圖,∠1+∠2+∠3=360°。
- 2 三角形的內角和:
 - 三角形的內角和為 180°。
 - 例 如圖, $\angle A + \angle B + \angle C = 180^{\circ}$ 。
- 3. 三角形的外角定理:
 - 三角形的任一外角等於兩個內對角的和。
 - 例 如圖, $\angle 1 = \angle B + \angle C$ 。
- 4. n 邊形的內角和:
 - n 邊形的內角和為 $(n-2) \times 180^{\circ}$ 。
 - 例 五邊形的內角和為 (5-2)×180°=540°。



- n 邊形的一組外角和為 360°。
- 6. 正 n 邊形的內角度數:
 - 正 n 邊形的每一個內角皆為 $\frac{(n-2)\times180^{\circ}}{n}$ 或 $180^{\circ} \frac{360^{\circ}}{n}$ 。
 - 例 正六邊形的每一個內角皆為 $180^{\circ} \frac{360^{\circ}}{6} = 120^{\circ}$ 120°
- 7. 正 n 邊形的外角度數:
 - 正n 邊形的每一個外角皆為 $\frac{360^{\circ}}{n}$ 。
 - 例 正八邊形的每一個外角皆為 $\frac{360^{\circ}}{8}$ = 45° \circ

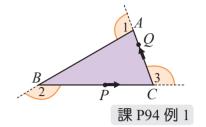






基礎題

① 如圖, $\triangle ABC$ 中, $\angle 1$ 、 $\angle 2$ 、 $\angle 3$ 分別是 $\angle A$ 、 $\angle B$ 、 $\angle C$ 的外角。若 $\angle 1$ =100°, $\angle 2$ =150°,則自 P 點以逆時針的方向沿著 $\triangle ABC$ 的邊,經過 C 點到達 Q 點,所轉的角度是多少度? 15分 10分 $\angle 1+\angle 2+\angle 3=360$ °(外角和 360°) 100° +150° + $\angle 3=360$ ° $\angle 3=110$ °



答:110°。

② 已知 $\triangle ABC$ 中, $\angle A: \angle B: \angle C=5:12:13$,則 $\triangle ABC$ 是銳角三角形、 直角三角形或鈍角三角形? 15 分 10 分 課 P95 概念題

設
$$\angle A = 5x^{\circ}$$
, $\angle B = 12x^{\circ}$, $\angle C = 13x^{\circ}$
 $5x + 12x + 13x = 180$
 $x = 6$
因此 $\angle A = 30^{\circ}$, $\angle B = 72^{\circ}$, $\angle C = 78^{\circ}$
所以 $\triangle ABC$ 為銳角三角形

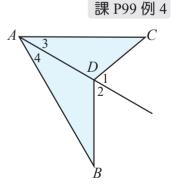
曾:銳角三角形。

- ③ 如圖, $\angle BAC = 60^{\circ}$, $\angle B = 30^{\circ}$, $\angle C = 40^{\circ}$ 。利用「外角等於兩個內對角的和」的性質,將適當的文字或符號填入下面的空格中,並求出 $\angle CDB$ 的度數。
 - $(1) \angle 1 = \angle C + \underline{\angle 3} \circ$

每格3分,共24分

每格 3 分,共 24 分

- $(2) \angle 2 = \angle B + \underline{\angle 4} \circ$



4 求十三邊形的內角和。 15分 10分

課 P101

十三邊形的內角和為(13-2)×180°=1980°

答:1980°。

⑤ 若一個正 n 邊形的一個外角是 40° ,求 $n \circ 15 分 10 分$

課 P105 隨堂

正 n 邊形的外角和為 360°,

所以
$$\frac{360^{\circ}}{n} = 40^{\circ}$$

答:9。

⑥ 如圖,正五邊形 ABCDE 中, \overline{AC} 、 \overline{AD} 為對角線,求 $\angle CAD$ 。

課 P105 例 8

ABCDE 為正五邊形,所以

$$\angle B = \angle E = \frac{(5-2) \times 180^{\circ}}{5} = 108^{\circ}$$

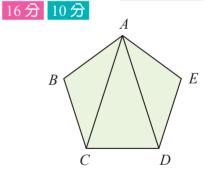
因為 $\overline{BA} = \overline{BC}$,所以

$$\angle BAC = \angle BCA = \frac{1}{2} (180^{\circ} - 108^{\circ}) = 36^{\circ}$$

同理,∠EAD=36°

所以
$$\angle CAD = \angle BAE - \angle BAC - \angle EAD$$

= $108^{\circ} - 36^{\circ} - 36^{\circ}$
= 36°



答:36°。

制料

¶ 如圖, $\triangle ABC$ 中,D、E、F 三點分別在 \overline{AB} 、 \overline{BC} 、 \overline{AC} 上,且 \overline{BD} = \overline{BE} , \overline{CE} = \overline{CF} 。若 $\angle B$ = 40° , $\angle C$ = 30° ,求 $\angle DEF$ 。 10 分

$$\therefore \overline{BD} = \overline{BE} \quad \therefore \angle BDE = \angle BED$$

$$\angle BED = \frac{1}{2} (180^{\circ} - \angle B) = \frac{1}{2} (180^{\circ} - 40^{\circ}) = 70^{\circ}$$

同理,
$$\angle CEF = \frac{1}{2} (180^{\circ} - \angle C) = \frac{1}{2} (180^{\circ} - 30^{\circ}) = 75^{\circ}$$

 $\angle DEF = 180^{\circ} - \angle BED - \angle CEF = 180^{\circ} - 70^{\circ} - 75^{\circ} = 35^{\circ}$

答:35°。

② 若一個 n 邊形的所有內角形成公差為 4° 的等差數列,且最大角為 162° ,求 $n \cdot 8$ 分

依題意列式得
$$\frac{n[2\times162+(n-1)\times(-4)]}{2} = (n-2)\times180$$

$$n(328-4n) = 360n-720$$

$$4n^2 + 32n - 720 = 0$$

$$n^2 + 8n - 180 = 0$$

$$(n-10)(n+18)=0$$

$$n=10$$
或 -18 (不合)

答:10。

③ 已知一個正 n 邊形,其一個內角是其一個外角的 4 倍,求 n。 8 分

設此正n 邊形的每一個外角為 x° ,則每一個內角為 $4x^{\circ}$ 。

::一個內角與一個外角的和為 180°,

$$\therefore x + 4x = 180$$
, $5x = 180$, $x = 36$

正
$$n$$
 邊形的一個外角為 $\frac{360^{\circ}}{n} = 36^{\circ}$

$$n = 10$$

答:10。